专为高三考生提供有价值的资讯
空间直线点向式方程的形式为(和对称式相同):(x-x0)/l=(y-y0)/m=(z-z0)/n,其方向向量就是(l,m,n)或反向量(-l,-m,-n)。
空间直线点向式方程的形式为(和对称式相同)(x-x0)/l=(y-y0)/m=(z-z0)/n,其方向向量就是(l,m,n)或反向量(-l,-m,-n)。
比如直线x+2y-z=7-2x+y+z=7
(1)先求一个交点,将z随便取值解出x和y不妨令z=0由x+2y=7-2x+y=7解得x=-7/5,y=21/5所以(-7/5,21/5,0)为直线上一点
(2)求方向向量因为两已知平面的法向量为(1,2,-1),(-2,1,1),所求直线的方向向量垂直于2个法向量。由外积可求方向向量=(1,2,-1)×(-2,1,1)=i j k1 2 -1-2 1 1=3i+j+5k所以直线方向向量为(3,1,5)
把直线上的向量以及与之共线的向量叫做直线的方向向量。
所以只要给定直线,便可构造两个方向向量(以原点为起点)。即已知直线l:ax+by+c=0,则直线l的方向向量为d1=(-b,a)或d2=(b,-a)。
已知定点Pο(xο,yο,zο)及非零向量v={l,m,n},则经过点Pο且与v平行的直线L就被确定下来,因此,点Pο与v是确定直线L的两个要素,v称为L的方向向量。由于对向量的模长没有要求,所以每条直线的方向向量都有无数个。
Copyright 2019-2029 https://www.heibian.com 【黑边网】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告