专为高三考生提供有价值的资讯

当前位置:黑边网高考复习高中数学四点共圆的判定方法都有哪些

四点共圆的判定方法都有哪些

时间:2019-12-23作者:微凉395一键复制全文保存为WORD

如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。共圆的四个点所连成同侧共底的两个三角形的顶角相等。

四点共圆的判定方法都有哪些

四点共圆怎么判定

判定1

从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆.

推论:证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.即连成的四边形三边中垂线有交点,可肯定这四点共圆.

判定2

1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.

2:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

判定3

把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(相交弦定理的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(割线定理的逆定理)

判定4

四边形ABCD中,若有AB*CD+AD*BC=AC*BD,即两对边乘积之和等于对角线乘积,则ABCD四点共圆。该方法可以由托勒密定理逆定理得到。

托勒密定理逆定理:对于任意一个凸四边形ABCD,总有AB*CD+AD*BC≥AC*BD,等号成立的条件是ABCD四点共圆。

判定5

西姆松定理逆定理:若一点在一三角形三边上的射影共线,则该点在三角形外接圆上。

四点共圆性质

若A、B、C、D四点共圆,圆心为O,延长AB至E,AC、BD交于P

四点共圆的判定方法都有哪些

性质一:∠A+∠C=180°,∠B+∠D=180°

性质二:∠ABC=∠ADC(同弧所对的圆周角相等)

性质三:∠CBE=∠D(外角等于内对角)

性质四:△ABP∽△DCP(三个内角对应相等)

性质五:AP×CP=BP×DP(相交弦定理)

性质六:AB×CD+AD×CB=AC×BD(托勒密定理)

四点共圆的判定方法都有哪些

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式

小编推荐

1.2022年高考语文作文写作方法

2.北京高考考生号查询系统入口_2020年北京高考准考证号码查询方法

3.作文写高考的有哪些素材

4.高考半命题作文方法

5.2023高考读大学最好的十大城市 哪些城市前景好

6.财经类最好的3个专业 有哪些专业

7.400分的公办师范大学 有哪些学校

8.作文素材高考版有哪些

相关文章

  • 垂线的特点是什么

    垂线是两条直线的两个特殊位置关系,当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另
  • 平面向量公式 有哪些公式

    平面向量是在二维平面内既有方向又有大小的量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个

Copyright 2019-2029 https://www.heibian.com 【黑边网】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告