专为高三考生提供有价值的资讯
充分条件,如果A能推出B,那么A就是B的充分条件;必要条件,如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件。充分条件是指如果条件A成立,则必然导致结果B成立,但结果B的成立不一定需要条件A。
充分条件和必要条件的口诀有:充分条件,如果A能推出B,那么A就是B的充分条件;必要条件,如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件。
充分条件:如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。
必要条件:必要条件是数学中的一种关系形式。如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件,记作B→A,读作“B含于A”。数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B的必要条件。
必要条件是数学中的一种关系形式。如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件。如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。
假设A是条件,B是结论:由A可以推出B~由B可以推出A~~则A是B的充要条件(充分且必要条件),由A可以推出B~由B不可以推出A~~则A是B的充分不必要条件,由A不可以推出B~由B可以推出A~~则A是B的必要不充分条件,由A不可以推出B~由B不可以推出A~~则A是B的不充分不必要条件,简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件,如果能由结论推出条件,但由条件推不出结论。此条件为必要条件,如果既能由结论推出条件,又能有条件 推出结论。此条件为充要条件。
1.充分条件与必要条件的两个特征
(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”;
(2)传递性:若p是q的充分(必要)条件。q是r的充分(必要)条件,则p是r的充分(必要)条件。
注意区分“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的不同,前者是“p⇒q”而后者是“q⇒p”。
2.从逆否命题,谈等价转换
由于互为逆否命题的两个命题具有相同的真假性,因而,当判断原命题的真假比较困难时,可转化为判断它的逆否命题的真假,这就是常说的“正难则反”。
3.在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系。要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可。对涉及数学概念的命题的判定要从概念本身入手。
4.充要条件的判断,重在“从定义出发”,利用命题“若p则q”及其逆命题的真假进行区分,在具体解题中,要注意分清“谁是条件”“谁是结论”,如“A是B的什么条件”中。A是条件。B是结论,而“A的什么条件是B”中。A是结论。B是条件,有时还可以通过其逆否命题的真假加以区分。
Copyright 2019-2029 https://www.heibian.com 【黑边网】 皖ICP备19022700号-4
声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告