专为高三考生提供有价值的资讯

当前位置:黑边网高考复习高中数学二重积分的对称性

二重积分的对称性

时间:2023-03-09作者:梦醒一键复制全文保存为WORD

二重积分对称性主要是看被积函数与积分区域两个因素,若有对称性,则积分区域必定关于原点对称,二重积分也有奇偶性,但是有差别,要看积分区域对平面的对称性。

二重积分的奇偶对称性是什么

二重积分的奇偶对称性是被积函数与积分区域两个因素。对称性计算二重积分时要看被积函数或被积函数的一部分是否关於某个座标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。

二重积分的奇偶对称性特点:

奇偶性计算二重积分时要看被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性,二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限,本质是求曲顶柱体体积。

重积分有着广泛的应用,可以用来计算曲面的面积平面薄片重心等,平面区域的二重积分可以推广为在高维空间中的有向曲面上进行积分称为曲面积分,同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心平面薄片转动惯量,平面薄片对质点的引力等等。

二重积分的几何意义

二重积分的几何意义是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。

平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。

某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

二重积分的对称性

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式

小编推荐

1.二重积分的对称性

2.菱形的对称性

3.函数的对称性

4.轮换对称性使用条件

5.如何判断函数的对称性与周期性

相关文章

  • 垂线的特点是什么

    垂线是两条直线的两个特殊位置关系,当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另
  • 平面向量公式 有哪些公式

    平面向量是在二维平面内既有方向又有大小的量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个

Copyright 2019-2029 https://www.heibian.com 【黑边网】 皖ICP备19022700号-4

声明: 本站 所有软件和文章来自互联网 如有异议 请与本站联系 本站为非赢利性网站 不接受任何赞助和广告